- Home
- Standard 11
- Physics
10-2.Transmission of Heat
normal
A liquid in a beaker has temperature $\theta \left( t \right)$ at time $t$ and ${\theta _0}$ is temperature of surroundings, then according to Newton's law of cooling the correct graph between loge ${\log _e}(\theta - {\theta _0})$ and $t$ is
A

B

C

D

Solution
$\frac{-\mathrm{dT}}{\mathrm{dt}}=\mathrm{K}\left\{\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}-\mathrm{T}_{0}\right\}$
$\frac{-\mathrm{dT}}{\mathrm{dt}}=\mathrm{K}\left\{\mathrm{T}-\mathrm{T}_{0}\right\}$
$\int \frac{-\mathrm{d} \mathrm{T}}{\mathrm{T}-\mathrm{T}_{0}}=\int \mathrm{K} \cdot \mathrm{dt}$
$\ell n$ $\left(\mathrm{T}-\mathrm{T}_{0}\right)=-\mathrm{Kt}+\mathrm{C}$
$y=-m x+c$
Standard 11
Physics
Similar Questions
normal